Integrating different domains of big data – neurogenomics, neuroimaging, and genetics – can identify novel biological pathways implicated in schizophrenia and related serious brain disorders.

Resolving the mysteries of the human brain using big data

Recent genome-wide association studies for serious brain disorders like schizophrenia, bipolar disorder, and major depression have provided the first objective and bona fide clues, independent of symptomatology and epiphenomena, related to etiology. While these risk variants identify bases of DNA that differ in frequency between cases and controls, the biological mechanisms underlying any given risk variant are largely unknown. The Data Science group therefore focuses on generating and analyzing “big data” to better understand how different risk alleles affect brain development and function in order to identify how genetic risk manifests in the human brain.

Molecular readouts from human brain tissue allow for the analysis of genetic variation, regulatory epigenetic mechanisms like DNA methylation and chromatin accessibility, and resulting gene expression levels. These large and multi-dimensional datasets can be used to identify the causes and consequences of genetic risk in the human brain, and point to potential implicated gene and protein pathways and networks. The interplay between the genome, epigenome, and transcriptome in the human brain can therefore better highlight how dysregulation occurs in schizophrenia and related disorders.

Dr. Jaffe’s research focuses on the development and application of statistical models and approaches to high-throughput genomic data, like DNA methylation, gene expression, and sequence variation, in large biological studies.

Andrew Jaffe, Ph.D. - Lead Investigator, Lieber Institute for Brain Development
Lead Investigator, Andrew Jaffe, Ph.D.

Big Data

Data available now represents only a fraction of the information needed to unlock the mysteries of complex brain disorders.

See What sets us apart